10Gb/s XFP Optical Transceiver Module TR-XX13L-N00 SR-1/I-64.1, 10GBASE-LR/LW, 1200-SM-LL-L # **Features** - 10Gb/s serial optical interface compliant to 802.3ae - Uncooled 1310nm DFB transmitter and Pin photodiode receiver - XFP Mechanical interface with bail latch and hot pluggable - XFI High Speed Electrical Interface - 2-wire interface for management and digital diagnostic monitor - Low Power Consumption, Single +3.3V Power supply - perating case temperature: 0 to 70 °C - Il-metal housing for superior EMI performance - dvanced firmware allow customer system encryption information to be stored in transceiver #### **Applications** - SONET(OC-192)/SDH(STM64) line card - 0GBASE-LR (10.3125Gbps) - 0GBASE-LW (9.953Gbps) - 10GE Ethernet switches and routers Figure1: Interface to Host #### 1. General Description The TR-XX13L-N00 is a very compact 10Gb/s optical transceiver module for serial optical communication applications at 10Gb/s. The TR-XX13L-N00 converts a 10Gb/s serial electrical data stream to 10Gb/s optical output signal and a 10Gb/s optical input signal to 10Gb/s serial electrical data streams. The high speed 10Gb/s electrical interface is fully compliant with XFI specification and allows FR4 host PCB trace up to 200mm. The TR-XX13L-N00 is designed for use in a variety of 10Gb/s SONET/SDH equipment including FEC (9.95Gb/s to 10.7Gb/s) and Ethernet LAN (10.3Gb/s) and WAN (9.95Gb/s) applications. The high performance uncooled 1310nm DFB-LD transmitter and high sensitivity PIN receiver provide superior performance for SONET /SDH and Ethernet applications at up to 10km links. The fully XFP compliant form factor provides hot pluggability, easy optical port upgrades and low EMI emission. #### 2. Functional Description The TR-XX13L-N00 contains a duplex LC connector for the optical interface and a 30-pin connector for the electrical interface. Chart of section 3 shows the functional block diagram of TR-XX13L-N00 XFP Transceiver. #### **Transmitter Operation** The transceiver module receives 10Gb/s electrical data and transmits the data as an optical signal. The transmitter contains a Clock Data Recovery (CDR) circuit that reduces the jitter of received signal and reshapes the electrical signal before the electrical to optical (E-O) conversion. The optical output power is maintained constant by an automatic power control (APC) circuit. The transmitter output can be turned off by TX disable signal, at TX_DIS pin. When TX_DIS is asserted high, the transmitter is turned off. #### **Receiver Operation** The received optical signal is converted to serial electrical data signal. The optical receiver contains a CDR circuits that reshapes and retimes an electrical signal before sending out to the XFI channel (i.e. XFP connector and high speed signal traces). The RX_LOS signal indicates insufficient optical power for reliable signal reception at the receiver. #### **Management Interface** A 2-wire interface (SCL, SDA) is used for serial ID, digital diagnostics and other control /monitor functions. The address of XFP transceiver is 1010000x. MOD_DESEL signal can be used in order to support multiple XFP modules on the same 2-wire interface bus. Interface is compliant to XFP MSA. #### 3. Transceiver Block Diagram #### Pin Assignment and Pin Description # XFP Transceiver Electrical Pad Layout #### **Bottom View** # **Top View** # **Pin Descriptions** | Pin# | Name | Logic | Description | Note | |------|------------|---------|--|------| | 1 | GND | | Module Ground | 1 | | 2 | VEE5 | | 0.2V Power Supply , not in use | 3 | | 3 | MOD_DESEL | LVTTL-I | Module De-select; When held Low allows module to respond to 2-wire serial interface | | | 4 | INTERRUPTb | LVTTL-O | Indicates presence of an important condition, which can be read over the 2-wire serial interface. This pin is an open collector output and must be pulled up to host_Vcc on the host board. | | | 5 | TX_DIS | LVTTL-I | Transmitter Disable; When asserted High, transmitter output is turned off. This pin is pulled up to VCC3 in the module | | | 6 | VCC5 | | +5V Power Supply, not in use | 3 | | 7 | GND | | Module Ground | 1 | | 8 | VCC3 | | +3.3V Power Supply | | | 9 | VCC3 | | +3.3V Power Supply | | | 10 | SCL | I/O | 2-wire serial interface clock. Host shall resistor connected to host_Vcc of +3.3V. | 2 | | 11 | SDA | I/O | 2-wire serial interface data. Host shall use a pull-up resistor connected to host_Vcc of +3.3V. | | | 12 | MOD_ABS | LVTTL-O | Indicates Module is not present. Host shall pull up this pin, and grounded in the module. "High" when the XFP module is absent from a host board. | | | 13 | MOD_NR | LVTTL-O | Module not ready; When High, Indicates Module Operational Fault. This pin is an open collector and must be pulled to host_Vcc on the host board. | | | 14 | RX_LOS | LVTTL-O | Receiver Loss of Signal; When high, indicates insufficient optical input power to the module. This pin is an open collector and must be pulled to host_Vcc on the host board. | | | 15 | GND | | Module Ground | | | 16 | GND | | Module Ground | | | 17 | RDN | CML-O | Receiver Inverted Data Output; AC coupled inside the module. | | | 18 | RDP | CML-O | Receiver Non-Inverted Data Output; AC coupled in side the module. | | | 19 | GND | | Module Ground | | | 20 | VCC2 | | +1.8V Power Supply; not in use | | | 21 | P_DOWN/RST | LVTTL-I | Power down; When High, module is limited power mode. Low for normal operation. Reset; The falling edge indicates complete reset of the module. This pin is pulled up to VCC3 in the module. (Power Down function support upon request) | | | 22 | VCC2 | | +1.8V Power Supply; not in use | 3 | | 23 | GND | | Module Ground | 1 | |------|---------|--------|--|------| | 24 | REFCLKP | PECL-I | Reference clock Non-Inverted Input; not in use | | | Pin# | Name | Logic | Description | Note | | 25 | REFCLKN | PECL-I | Reference clock Inverted Input; not in use | | | 26 | GND | | Module Ground | 1 | | 27 | GND | | Module Ground | 1 | | 28 | TDN | CML-I | Transmitter Inverted Data Input; AC coupled inside the module. | | | 29 | TDP | CML-I | Transmitter Non-Inverted Data Input; AC coupled inside the module. | · | | 30 | GND | | Module Ground | 1 | #### Notes: - 1. Module ground pins are isolated from the module case and chassis ground within the module. - 2. Shall be pulled up with 4.7k to 10k ohm to a voltage between 3.15V and 3.45V on the host board. - 3. Not connected internally. - 4. Response time: typ. 20msec (XFP MSA Rev. 4.5 ≤ 1msec) - 5. $MOD_NR = (TX LOL) OR (RX LOL)$. #### **Recommended Power Supply Filter** # 4. Absolute Maximum Ratings | Parameter | Symbol | Min | Max | Unit | Note | |---------------------------------------|---------|------|----------|------|------| | Storage Temperature | Tst | -40 | 85 | degC | | | Relative Humidity (non-condensation) | RH | - | 85 | % | | | Operating Case Temperature | Торс | 0 | 70 | degC | 1 | | Supply Voltage | VCC3 | -0.5 | 3.6 | V | | | Voltage on LVTTL Input | Vilvttl | -0.5 | VCC3+0.5 | V | | | LVTTL Output Current | lolvttl | - | 15 | mA | | | Voltage on Open Collector Output | Voco | 0 | 6 | V | | | Receiver Input Optical Power(Average) | Mip | - | 3 | dBm | 2 | #### Notes: - 1. Ta: -10 to 60degC with 1.5m/s airflow with an additional heat sink. - 2. Pin Receiver. # 5. Recommended Operating Conditions and Supply Requirements | Parameter | Symbol | Min | Max | Unit | |------------------------------------|--------|-------|-------|------| | Operating Case Temperature | Торс | 0 | 70 | degC | | Relative Humidity (non-condensing) | Rhop | - | 85 | % | | Power Supply Voltage | VCC3 | 3.135 | 3.465 | V | | Power Supply Current | ICC3 | - | 500 | mA | | Total Power Consumption | Pd | - | 1.8 | W | ## 6. Low Speed Control and Alarm Signals Electrical Interface | Parameter | Symbol | Min | Max | Units | Note | |---|--------|----------|----------|-------|------| | XFP Interrupt, Mod NR, RX LOS | Vol | 0.0 | 0.4 | V | 1 | | XTT Interrupt, Wou_NTX, TX_EOS | Voh | Vcc-0.5 | Vcc+0.3 | V | 2 | | XFP TX DIS, P DOWN/RST | Vil | -0.3 | 0.8 | V | 3 | | XIT TX_DIS,T_DOWN/RST | Vih | 2.0 | VCC3+0.3 | V | 4 | | XFP SCL and SDA Output | Vol | 0.0 | 0.4 | V | 1 | | ATT SCE and SDA Output | Voh | Vcc-0.5 | Vcc+0.3 | V | 2 | | XFP SCL and SDA Input | Vil | -0.3 | VCC3*0.3 | V | 5 | | ATT GCE and GDA input | Vih | VCC3*0.7 | VCC3+0.5 | V | 6 | | Capacitance for XFP SCL and SDA I/O pin | Ci | - | 14 | pF | | | Total bus capacitive load for SCL and SDA | Cb | - | 100 | pF | 7 | | Total bus capacitive load for SCL and SDA | OD | | 400 | pF | 8 | #### Notes: - 1. Pull-up resistor must be connected to host_Vcc on the host board. lol(max)=3mA - 2. Pull-up resistor must be connected to host_Vcc on the host board. - 3. Pull-up resistor connected to VCC3 within XFP module. lil(max)= -10µA. - 4. Pull-up resistor connected to VCC3 within XFP module. lih(max)= 10μA. - 5. Pull-up resistor must be connected to host_Vcc on the host board. $lol(max) = -10\mu A$. - 6. Pull-up resistor must be connected to host Vcc on the host board. lol(max)= 10μA. - 7. At 400KHz, 3.0kohms pull-up resister, at 100kHz 8.0kohms pull-up resister max. - 8. At 400KHz, 0.8kohms pull-up resister, at 100kHz 2.0kohms pull-up resister max. # 7. Optical Interface | Transmitter Optical Interface | | | | | | | |--|--------|-------------------------|---------|-------|-------|------| | Parameter | Symbol | Min | Typical | Max | Unit | Note | | Operating Data Rate | - | 9.95 | | 10.70 | Gb/s | 1 | | Output Center
Wavelength | Itc | 1290 | 1310 | 1330 | nm | | | Spectral Width | dl | - | | 1 | nm | | | SMSR | SMSR | 30 | | - | dB | | | Average Output Power | Po | -6 | | -1 | dBm | 2 | | Disabled Power | Poff | - | | -30 | dBm | 2 | | Extinction Ratio | ER | 6 | | - | dB | 2 | | Minimum OMA-TDP
(10G Ethernet) | OMAtdp | -5.2 | | - | dBm | 3 | | Eye Mask
1(SONET/SDH) | | GR-253-CORE/ITU-T G.691 | | | | 2 | | Eye Mask 2 (10G
Ethernet) | | IEEE802.3ae | | 3 | | | | Generation Jitter 1
(20kHz - 80MHz) | | - | | 0.15 | Ulp-p | 2,4 | | Generation Jitter 2
(4MHz - 80MHz) | | - | | 0.1 | Ulp-p | 2,4 | | RIN | RIN | - | | -128 | dB/Hz | | | | | Optical Path | | | | | | Parameter | Symbol | Min | Typical | Max | Unit | Note | | Chromatic Dispersion (SONET/SDH) | CD | - | | 6.6 | ps/nm | | | Operating Distance (10G Ethernet) | | - | | 10 | km | | | Attenuation (SONET/SDH) | | 0 | | 4 | dB | | | Channel Insertion Loss (10G Ethernet) | | 0 | | 6 | dB | | | Maximum DGD
(SONET/SDH) | DGD | - | | 30 | ps | | | Receiver Optical Interface | | | | | | | | |-----------------------------|--------|----------|----------|---------|------|------|--| | Parameter | Symbol | Min | Typical | Max | Unit | Note | | | Operating Data Rate | - | 9.95 | | 10.70 | Gb/s | 1 | | | Input Center Wavelength | Irc | 1260 | | 1565 | nm | | | | Overload | Rovl | 0.5 | | - | dBm | | | | Minimum Sensitivity | Pmin | ı | -18 | -14.6 | dBm | 2 | | | Sensitivity in OMA | OMA0 | - | | -12.6 | dBm | 3 | | | Stressed Sensitivity in OMA | OMAst | - | | -10.3 | dBm | 3 | | | RX_LOS Assert Level | RLOSa | -25 | | | dBm | | | | RX_LOS Deassert Level | RLOSd | | | -15 | dBm | | | | RX_LOS Hysteresis | RLOSh | 1 | | 5 | dB | | | | Optical Path Penalty | PN | - | | 1 | dB | 1 | | | Optical Return Loss | ORL | 14 | | - | dB | | | | Jitter Tolerance | JTL | GR-253-C | ORE/ITU- | Г G.783 | | | | # Notes: - 1. Data rate tolerance - 10GBASE-LR/LW: typ.+/-100ppm - 2. Measured at 10.3125Gbps, Non-framed PRBS2^31-1, NRZ - 3. Measured by using InnoLight XFP evaluation board. # 8. Digital Diagnostic Functions The following digital diagnostic characteristics are defined over the Recommended Operating Environment unless otherwise specified. It is compliant to SFF8472 Rev9.2 with internal calibration mode. For external calibration mode please contact our sales stuff. | Parameter | Symbol | Min. | Max | Unit | Notes | |---|-----------|-------|------|------|-----------------------------| | Temperature monitor absolute error | DMI_Temp | -3 | 3 | degC | Over operating temp | | Laser power monitor absolute error | DMI_TX | -3 | 3 | dB | | | RX power monitor absolute error | DMI_RX | -3 | 3 | dB | -1dBm to
-15dBm
range | | Supply voltage
monitor absolute
error | DMI_VCC | -0.08 | 0.08 | V | Full operating range | | Bias current monitor | DMI_Ibias | -10% | 10% | mA | | #### 9. Mechanical Dimensions #### 10. MSA Compliant EEPROM Structure #### 11. ESD This transceiver is specified as ESD threshold 2kV for all electrical input pins, tested per MIL-STD-883, Method 3015.4 /JESD22-A114-A (HBM). However, normal ESD precautions are still required during the handling of this module. This transceiver is shipped in ESD protective packaging. It should be removed from the packaging and handled only in an ESD protected environment. #### 12. Laser Safety This is a Class 1 Laser Product according to IEC 60825-1:1993:+A1:1997+A2:2001. This product complies with 21 CFR 1040.10 and 1040.11 except for deviations pursuant to Laser Notice No. 50, dated (July 26, 2001) | USA | China | |--|--| | InnoLight Technology Corp. | InnoLight Technology (Suzhou) Ltd. | | Tel: (408) 838-8769 | Tel: (0512) 6299-4757 | | Fax: (408) 777-8091 | Fax: (0512) 6299-4515 | | Email: omok@innolight.com | Email: jyang@innolight.com | | Address: Acorn Campus, 3 Results Way,
Cupertino, CA 95014 | Address: A311 Section2 International Science Park 1355 Jinji Lake Ave., Suzhou SIP, Jiangsu 215021 China | **Contact Information**